دمج خوارزمية الخفاش مع عكس المتوسطات الموزونة pdf
ملخص الدراسة:
Inverse Weighted K-means less sensitive to poorinitialization than the traditionalK-means algorithm. Therefore, this paper introduce a new hybrid algorithm that integrates inverse weighted k-means algorithm with the optimization bat algorithm, which takes the advantages of both algorithms, from one side the quick convergence and the best global fitness values that obtained from using the bat algorithm and from other side the best clustering results that obtained from inverse weighted k-means algorithm. Moreover, to discuss in deeply the best choices of numerator and denominator powers to get best cluster integrity by getting the best value of cost function by comparing the results of the new algorithm with the inverse weighted k-means algorithm. Improved outcomes were achieved using the new hybrid algorithm.
توثيق المرجعي (APA)
Alhanjouri, Mohammed A.,& Alghoul, Ahmed (2019). Integrating Bat Algorithm to Inverse Weighted K-means. International Journal of Recent Technology and Engineering, Vol. 8, No. 2, Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. 27457
خصائص الدراسة
-
المؤلف
Alhanjouri, Mohammed A.
Alghoul, Ahmed
-
سنة النشر
2019-07-30
-
الناشر:
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
-
المصدر:
المستودع الرقمي للجامعة الإسلامية بغزة
-
نوع المحتوى:
Journal Article
-
اللغة:
English
-
محكمة:
نعم
-
الدولة:
فلسطين
-
النص:
دراسة كاملة
-
نوع الملف:
pdf